摘要

近年来,哈希算法由于其存储成本小、检索速度快的特点,在大规模多媒体数据的高效跨模态检索中受到了广泛关注。现有的跨模态哈希算法大多是有监督和无监督方法,其中有监督方法通常能够获得更好的性能,但在实际应用中要求所有数据都被标记并不具有可行性。此外,这些方法大多数是离线方法,面对流数据的输入需要付出高额训练成本且十分低效。针对上述问题,提出了一种新的半监督跨模态哈希方法——在线半监督锚图跨模态哈希(Online Semi-supervised Anchor Graph Cross-modal Hashing, OSAGCH),构建了半监督锚图跨模态哈希模型,在只有部分数据有标签的情况下,利用正则化锚图预测数据标签,并通过子空间关系学习哈希函数,一步生成统一的哈希码,同时针对流数据输入的情况对该模型进行了在线化学习,使其能够处理流数据。在公共多模态数据集上进行了实验,结果表明所提方法的性能优于其他现有方法。