摘要

研究了一种改进的去噪方法及其在脉冲拍频信号去噪中的应用。该算法结合了局部均值分解(Local mean decomposition, LMD)和时频峰值滤波(Time-frequency peak filtering, TFPF)的优点,称为L-T算法。TFPF作为一种经典的时频滤波方法,较长的窗长可以在保留信号幅值的前提下有效抑制随机噪声,而较短的窗长则导致信号幅值严重衰减。因此,为了保持有效信号幅度、抑制随机噪声,对LMD和TFPF进行了改进。首先利用LMD将原始信号分解为无级生存(Progression-free survival, PFS),然后计算各乘积函数均值的标准误差,将许多PFSs分为有用分量、混合分量和噪声分量。其次,将短窗TFPF用于有用分量去噪,长窗TFPF用于混合分量去噪,得到重构后的信号。最后,将该算法用于F-P压力传感器的降噪。实验结果表明,与传统小波去噪算法相比,L-T算法去噪效果更优。