摘要

针对大坝变形时间序列预测问题,考虑多测点变形相关性,建立变形量时空多维输入矩阵,提出一种基于K-means聚类融合多元时空信息的Informer-AD大坝变形预测模型。首先,采用K-means聚类对变形测点进行分区;其次,引入面板数据回归模型分析分区结果;最后,提出融合多元时空信息的Informer-AD大坝变形预测模型。利用该模型对空间特征序列进行学习,通过全连接层整合空间特征,输出预测的大坝变形值。将上述预测模型运用于CT混凝土重力坝,结果表明,本文所提出的考虑时空关联性的预测方法充分挖掘大坝变形整体性态与测点空间分布特性的关系,能够更好地捕捉变形时空特性,进而提高预测精度。