摘要

电力生产装置运行中各种燃料的成本逐步增加,需要最小化成本函数以求解此类复杂经济负荷调度问题.鉴于此,提出一种基于动态惩罚因子的改进蚱蜢算法求解经济负荷调度(economic load dispatch, ELD)问题和经济排放联合调度(combined economic emission dispatch, CEED)问题.为了提高蚱蜢算法(grasshopper optimization algorithm, GOA)性能,提出一种改进的混合蚱蜢算法(hybrid grasshopper optimization algorithm, HGOA),将重力搜索算子和鸽群搜索算子-地标算子加入GOA中,增强算法的搜索能力,平衡算法的勘探和开发.同时,为了更好地解决ELD和CEED问题中的约束问题,提出6个惩罚函数,包括2个V型函数、反正切函数、反正弦函数、线性函数和二次函数,并使用动态惩罚策略代替传统的固定值惩罚策略.选取3个ELD问题案例和4个CEED问题案例验证所提出方法的有效性,实验结果表明, HGOA相较于其他元启发式算法在求解质量上表现更好,且动态惩罚策略比固定值惩罚策略效果更好.

全文