摘要
为了提高玉露香梨可溶性固形物的检测精度,本研究提出了一种优化反向传播(back propagation,BP)神经网络的玉露香梨SSC预测方法。使用高光谱成像仪采集玉露香梨表面的光谱信息,对剔除异常样本的光谱数据进行不同预处理,以确定最优的预处理方法。采用遗传算法(Genetic Algorithm,GA)优化BP神经网络的初始权重和阈值,建立玉露香梨SSC的GA-BP、BP、PLSR预测模型。结果表明,中值滤波(medianfilter,MF)预处理后的结果最好。在同一训练样本下,所建GA-BP模型性能最佳,建模集决定系数(Rc2)为0.98,均方根误差(RMSEC)为0.19;预测集决定系数(Rp2)为0.86,均方根误差(RMSEP)为0.43,剩余预测偏差(RPD)为2.45;在此基础上,采用不同数量的样本训练GA-BP网络,样本数为300时,建立的GA-BP模型的Rc2为0.99,RMSEC为0.22;Rp2为0.98,RMSEP为0.20。因此,采用GA-BP神经网络结合高光谱技术可快速、准确的检测玉露香梨可溶性固形物,当训练样本达到一定数量时,可进一步提升模型的预测精度,为基于BP神经网络检测玉露香梨SSC提供了理论基础。
- 单位