摘要
本文使用BP神经网络、随机森林回归算法,对2017年全年风云三号C星(FY-3C)GNSS掩星温度廓线数据进行修正和评估.结果表明:在全球范围内,两种方法均可以修正GNSS掩星温度数据,随机森林回归算法的修正效果优于神经网络方法,随机森林回归算法和神经网络方法修正后的结果与再分析数据的平均绝对误差分别为0.03 K与0.32 K,均方误差分别为0.09 K2与1.02 K2.将全球按照10°×10°划分为324个网格后,随机森林回归算法对平均绝对误差与均方误差修正的正向收益分别为97.53%与92.9%,神经网络方法对平均绝对误差与均方误差修正的正向收益分别为75.61%与67.9%.
- 单位