摘要

针对煤炭光谱特征信息分散的现象,提出了基于神经网络集成的挥发分近红外回归模型.该模型引入集成学习的思想,综合SOM,RBF,BP和Elman神经网络学习算法的优势,通过求各子模型的输出均值获得最终的预测结果.为了减小因算法参数设置不当而引起的学习误差,根据各网络算法的特点,利用经验知识、交叉验证和遗传算法优化模型参数.研究结果表明:经相同算法优化后,集成学习模型的性能明显优于单一神经网络,其最大误差小于3%,比单一神经网络小1~2倍.该方法有效地提高了模型的学习精确度,且具有较好的泛化性,适用于复杂多变的非线性煤质近红外回归问题.

全文