摘要

针对目前已有的可见光图像生成红外图像的算法不能感知图像的弱纹理区域而导致生成的图像细节信息不突出、图像质量低的问题,本文提出了一种适用于图像生成任务的改进循环生成对抗网络(CycleGAN)结构。首先,利用特征提取能力更强的残差网络构建CycleGAN的生成器网络结构,使图像特征可以充分被提取,解决图像因特征提取不充分导致图像质量低下的问题;其次,在生成器的网络结构中引入了通道注意力机制和空间注意力机制,利用注意力机制对图像感知能力较差的区域进行权重处理,解决图像纹理细节丢失的问题。在OSU数据集上,本文所提出的方法相较于CycleGAN方法在峰值信噪比(PSNR)以及结构相似性(SSIM)指标上分别提高了7.1%和10.9%,在Flir数据集上的PSNR和SSIM分别提高了4.0%和6.7%。经过多个数据集上的实验结果证明,本文改进的方法能够突出图像生成任务中的细节特征信息,并且能有效地提升图像生成的质量。

全文