摘要
推荐系统是建立在海量数据挖掘基础之上的一种智能平台,根据用户个人信息与物品特征,比如用户的兴趣、历史购买行为和物品的材质、价格等,利用统计分析和机器学习等人工智能技术建立模型,预测用户对新物品的评价与喜好,从而向用户推荐其可能感兴趣的潜在物品,以实现个性化的信息服务和决策支持.然而,推荐系统的历史数据集、预测模型和推荐结果都与用户的隐私休戚相关,如何能在有效保护用户隐私的前提下,提供正确性可验证的有效推荐结果是一个具有挑战性的重要研究课题.国内外现有的工作多是通过数据扰动或公钥全同态加密技术来试图解决这个问题,但都无法满足推荐系统对高效性、精确性和各类隐私保护的要求.从推荐系统隐私保护的模式、安全模型、轻量级的推荐系统隐私保护一般性构造与推荐结果正确性可验证、可审计等方面,系统阐述了国内外最新研究成果,并在此基础上提出了存在问题、未来研究方向与解决方案.在安全模型方面,聚焦于标准模型或通用组合模型下,用户数据隐私、预测模型隐私和推荐结果隐私等多种安全模型的形式化刻画;在轻量化方面,将不依赖公钥全同态加密技术,通过减少公钥加密/解密次数(最优时一次),在单用户、多数据模型和多用户、多数据模型下,提出高效的推荐系统隐私保护一般性构造方法;最后,通过批量验证技术研究推荐结果轻量化防欺诈与抗抵赖的一般性理论问题.从而,为适用于推荐系统隐私保护的新型加密方案研究及其实用化提供理论和方法支撑.
- 单位