摘要

针对现有数据驱动型方法在滚动轴承早期退化识别中存在敏感度低、误警率高的问题,提出一种面向瞬态机械装备健康监测的动态调整灰色关联分析(DAGIA)方法。该方法首先采用希尔伯特(Hilbert)变换对滚动轴承振动数据进行幅度解调得到包络信号。为了削弱分辨系数取值的影响以凸显关联度值的区分程度,将可以表征轴承退化信息强弱的特征噪声能量比(FNER)指标引入传统灰色关联分析(TGIA)中动态调整分辨系数。然后,提取轴承运行初期的第一组数据作为参考数据,计算其余数据和参考数据的动态灰色关联度并构建轴承性能衰退指标。最后,根据正常样本并结合切比雪夫不等式设置控制线瞬态识别滚动轴承早期退化起始位置。利用IMS和XJTU-SY数据库完成对轴承早期退化瞬态识别,结果表明,所提方法可以瞬态识别轴承早期退化位置,误报警逼近于0,兼具敏感性和鲁棒性,有利于设备维护人员更好掌握滚动轴承的运行状态。

全文