摘要

为实现GIS隔离开关机械故障的智能诊断,基于GIS隔离开关分合闸过程中的振动信号,提出了基于深度迁移学习的GIS隔离开关机械故障诊断方法。首先应用二阶同步挤压傅里叶变换(FSST2)获取了GIS隔离开关振动信号的时频分布,然后基于深度迁移学习的思想构建预训练模型并进行优化,建立了GIS隔离开关机械故障智能诊断模型。对某GR角型GIS隔离开关正常和典型机械故障状态下的振动信号分析结果表明,基于FSST2得到的GIS隔离开关振动信号时频表示具有较好的能量聚集性,所建立的GIS隔离开关机械故障智能诊断模型识别准确率高且模型复杂度低,可用于GIS隔离开关机械故障的高效诊断。

全文