摘要

基于热红外视频的生猪体温检测过程中,视频中保育期生猪头部姿态变化大,且耳根区域小,导致头部和耳根区域定位精度低,影响生猪耳根温度的精准检测。针对以上问题,本文提出了一种基于改进YOLO v4(Mish Dense YOLO v4,MD-YOLO v4)的生猪耳根温度检测方法,构建了生猪关键部位检测模型。首先,在CSPDarknet-53主干网络中,添加密集连接块,以优化特征转移和重用,并将空间金字塔池化(Spatial pyramid pooling, SPP)模块集成到主干网络,进一步增加主干网络感受野;其次,在颈部引入改进的路径聚合网络(Path aggregation network, PANet),缩短多尺度特征金字塔图的高、低融合路径;最后,网络的主干和颈部使用Mish激活函数,进一步提升该方法的检测精度。试验结果表明,该模型对生猪关键部位检测的mAP为95.71%,分别比YOLO v5和YOLO v4高5.39个百分点和6.43个百分点,检测速度为60.21 f/s,可满足实时检测的需求;本文方法对热红外视频中生猪左、右耳根温度提取的平均绝对误差分别为0.26℃和0.21℃,平均相对误差分别为0.68%和0.55%。结果表明本文提出的基于改进YOLO v4的生猪耳根温度检测方法,可以应用于热红外视频中生猪关键部位的精准定位,进而实现生猪耳根温度的准确检测。

全文