摘要
针对传统空调压缩机故障诊断工况信号采集困难的缺点,提出一种基于学习矢量量化(learning vector quantization,LVQ)神经网络的空调压缩机声纹识别模型用于空调压缩机故障诊断,将声纹识别技术引入压缩机故障诊断。对压缩机的声音数据进行预处理,包括预加重、分帧、加窗,在分帧步骤中针对压缩机的声音特性进行改进,通过计算声音信号的梅尔倒谱系数(Mel frequency cestrum coefficient,MFCC)得到压缩机声音的特征向量。在模型训练阶段,重点分析原始的LVQ算法和改进的LVQ算法的优缺点,对3种LVQ算法进行对比实验。实验结果表明,使用LVQ3算法学习的压缩机声纹识别模型在测试集上可以达到90%的召回率,研究结果为压缩机故障诊断提供了一种依据。
- 单位