基于深度强化学习的微电网储能调度策略研究

作者:王亚东; 崔承刚; 钱申晟; 杨宁; 陈辉; 奚培锋
来源:可再生能源, 2019, 37(08): 1220-1228.
DOI:10.13941/j.cnki.21-1469/tk.2019.08.018

摘要

针对含光伏发电的微电网系统储能调度问题,文章提出了一种基于深度强化学习的微电网储能系统调度策略。为了分析不同场景组合模型对微电网储能调度策略的影响,以住宅用户微电网系统为例,构建了微电网调度问题环境模型。选取两种电价方式和3种场景进行理论分析,利用深度卷积神经网络(DCNN)提取微电网调度时间序列信息特征,以Q值强化学习机制实现微电网储能调度策略。研究结果表明,对于不同电价方式的场景,强化学习算法都能充分发挥模型的自主性,主动学习环境信息,获得最优调度策略。其中,实时电价方式下"光伏预测量+时间序列信息"的场景组合使微电网获得最大运行收益。与无干扰场景相比,在加入20%光伏发电量的随机干扰场景下,文章所建立的基于强化学习的场景组合模型使微电网获得的运行收益的偏差仅为2.5%。

全文