基于矩阵分解的DeepWalk链路预测算法

作者:冶忠林; 曹蓉; 赵海兴*; 张科; 朱宇
来源:计算机应用研究, 2020, 37(02): 424-429+442.
DOI:10.19734/j.issn.1001-3695.2018.07.0523

摘要

现有的链路预测方法的数据来源主要是基于邻居、路径和随机游走的方法,使用的是节点相似性假设或者最大似然估计,尚缺少基于神经网络的链路预测研究。基于神经网络的一些研究表明,基于神经网络的DeepWalk网络表示学习算法可以更加有效地挖掘到网络中的结构特征,已有研究证明DeepWalk等同于分解目标矩阵。因此,提出了一种基于矩阵分解的DeepWalk链路预测算法(LPMF)。该算法首先基于矩阵分解的DeepWalk算法分解得到网络的表示向量;然后通过余弦相似度计算每对节点之间的相似度,构建目标网络的相似度矩阵;最后利用相似度矩阵,在三个真实的引文网络中进行链路预测实验。实验结果表明,提出的链路预测算法性能优于现存的20余种链路预测算法。这充分表明了LPMF能够有效地挖掘网络中节点之间的结构关联性,而且在实际网络的链路预测中能够发挥出较为优异的性能。

全文