摘要
以深度学习为代表的智能化技术在提升电磁频谱控制与利用系统性能水平的同时,也暴露出其脆弱性,催生出一批以对抗样本为代表的智能电磁攻防技术。随着智能化的快速应用和发展,该领域势必成为电磁频谱竞争的又一个“制高点”。首次尝试着明确了电磁对抗样本攻防的概念内涵,为规范后续的关键技术研究和具体应用提供参考。分析了智能模型脆弱性机理,认为智能模型脆弱性与可解释性存在一定的关系,将专家知识嵌入到模型学习中是下一步改善模型鲁棒性的研究方向。系统梳理了电磁信号对抗样本攻击和对抗样本防御的研究脉络,总结了通用对抗样本领域的共性研究规律,可以直接为电磁信号对抗样本研究提供借鉴。通过总结电磁信号对抗样本的研究规律,提炼出电磁信号对抗样本特有的问题。在此基础上,结合团队近年在该领域的研究积累,提出下一步的发展趋势,对抗攻击下一步的研究趋势是适应跨模型、跨任务的场景,应更加注重领域知识的应用,目标是要对抗多源综合的传感器体系;对抗防御的研究趋势是寻找鲁棒性与泛化性的权衡,通过利用信号处理知识优化处理流程,提高模型的对抗防御性能。同时关注鲁棒性评估,这可能是下一代智能化系统可靠性评估的关键技术之一。
- 单位