摘要

在合金钢众多成分中碳(C)属于微量非金属元素,其含量决定了合金钢的主要力学性能,准确、实时掌握C元素的含量,对合金钢的生产及分类起到关键作用。双脉冲激光诱导击穿光谱(DP-LIBS)是一种可用于在线快速分析合金钢中元素的有效手段,不仅具有实时、样品预处理简单等优点,还能够增强物质的烧蚀度和信号强度,从而提高LIBS技术的检测灵敏度。为了减小基体效应影响,进一步提高LIBS技术对合金钢中微量C元素定量分析的精确性,采用多元素多谱线的修正方法,通过DP-LIBS结合反向传播人工神经网络(BP-ANN),建立多变量GA-BP-ANN定标法。首先在氩气环境对合金钢样品进行DP-LIBS采集,目标C元素选择了谱线强度变化能够体现其含量变化的C 193.09 nm处的原子谱线,同时选取共存元素Fe, Cr, Mn和Si对应的特征谱线,以提供更多的光谱信息,提高C元素定量分析的准确度,共选择15条特征分析谱线,其中Fe元素含量丰富且相对稳定,作为内标元素引入以减小谱线波动;之后通过遗传算法(GA)寻优,对C/Fe, Cr/Fe, Mn/Fe和Si/Fe的谱线强度比进行优化选择;最后将GA选择的多谱线强度比作为BP-ANN网络的输入,输出为目标C元素浓度值,建立多变量GA-BP-ANN定标方法。为比较该方法预测结果的精确性,同时建立传统定标曲线法与以C/Fe为输入的单变量BP-ANN定标方法。利用标准合金钢样品,通过留一法交叉预测C元素含量值,与内标法和单变量BP-ANN定标方法相比,预测样品的平均相对误差分别由14.78%和14.75%减小到8.29%,预测值与真实值之间的决定系数R~2分别由0.967 4和0.974 4提升至0.989 3。结果说明了多变量GA-BP-ANN定标法预测的C元素含量更接近于真实含量,证明了该方法用于LIBS检测合金钢中C元素含量的可行性。

  • 单位
    高等研究院; 长春工业大学; 电子工程学院; 吉林建筑大学城建学院