摘要
随着大数据应用的普及,DDoS攻击日益严重并已成为主要的网络安全问题。针对大数据环境下的DDoS攻击检测问题,设计了一种融合聚类和智能蜂群算法(DFSABCelite)的DDoS攻击检测系统。该系统将聚类算法与智能蜂群算法相结合来进行数据流分类,用流量特征分布熵与广义似然比较判别因子来检测DDoS攻击数据流的特征,从而实现了DDoS攻击数据流的高效检测。实验结果显示,该系统在类内紧密度、类间分离度、聚类准确率、算法耗时和DDoS检测准确率方面明显优于基于并行化K-means的普通蜂群算法和基于并行化K-means算法的DDoS检测方法。
- 单位