摘要

随着自然语言处理(NLP)的不断发展,深度学习被逐渐运用于文本分类中.然而大多数算法都未有效利用训练文本的实例信息,导致文本特征提取不全面.为了有效利用对象的实例信息,本文提出最近邻注意力和卷积神经网络的文本分类模型(CNN-AKNN).通过引入基于加权卡方距离的最近邻改进算法训练文本,构建文本对象的注意力,然后将注意力机制与卷积神经网络相结合实现全局特征与局部特征的提取,最后通过softmax函数进行文本分类.本文采用搜狗新闻语料库、中山大学语料库以及英文新闻语料库AGnews进行大量实验,结果表明本文所使用的改进算法相较于基准算法效果更优,更有利于提取模型的隐含特征.