摘要
目的:通过交叉对比神经网络(CCNN)实现心音信号的自动分类,从而对心血管疾病进行早期诊断。方法:实验基于PhysioNet/Cinc 2016心音数据库。训练集和测试集数据来自互斥的健康受试者/病理患者,并以4:1的比例进行划分,输入CCNN。CCNN利用深度卷积神经网络进行特征提取,结合基于信息的相似度度量理论(IBS),对特征向量间的相似性进行度量并分类。结果:实验结果得出灵敏度为0.834 6,特异性为0.962 3,最终大赛综合得分为0.898 5。结论:CCNN使用交叉对比的输入模式扩充数据量,引入信号间的对比信息,同时在神经网络的训练过程中应用统计学思想,使网络具备良好的泛化性,更加适应医学数据量较少的场景,在心音分类中取得较好的结果。
- 单位