摘要
为提高低对比度、复杂自然图像显著性检测的准确率和泛化性能,提出一种贝叶斯框架下的全局和局部信息融合的显著性检测模型.首先,构建深度卷积自编码网络,采用对称编解码结构,监督学习图像全局特征,得到全局显著图;然后,根据全局显著图产生前景和背景码本,利用局部约束线性编码算法进行编码,采用稀疏编码描述局部特征,产生局部显著图;最后,提出采用贝叶斯框架,将全局和局部信息融合,生成最终显著图.实验结果表明,所提模型在ECSSD,DUT-OMRON和PASCAL数据集上F-measure值分别为76.53%、59.45%和72.52%,MAE值分别为0.143 28、0.137 87和0.181 05,且能够有效对低对比度、复杂真实自然图像进行显著性检测.
- 单位