摘要

研究可编程控制系统优化问题,可编程控制系统具有非线性、时变性等特点,传统PID控制器优化方法难以建立精确的数学模型,使得系统参数设定困难,导致可编程控制系统的控制效果不理想。为了解决传统的PID算法所带来的问题,利用RBF神经网络非线性、自学习能力,提出一种基于粒子群神经网络的PID参数优化算法。将粒子群和神经网络相结合,形成了一种智能控制算法,并将应用于可编程控制系统。测试结果表明,粒子群神经网络提高了PID控制参数优化速度,提高了可编程控制系统可靠性和鲁棒性,具有一定的理论和实用价值。