摘要

针对无人机(UAV)夜间目标检测技术准确率较低的问题,对现有夜间目标检测方法和YOLOv5算法进行简要介绍,提出了基于YOLOv5算法的夜间目标检测技术。通过在原YOLOv5网络中加入改进的Retinex算法对原网络进行动态增强,在模型训练过程中,将Focus层替换成CBS层,改善模型训练效果,并利用改进算法对UAV夜间目标检测性能进行仿真。结果表明,改进的YOLOv5算法在查准率和查全率方面分别比原YOLOv5算法提高了11.22%和5.32%,有效提升了UAV夜间目标检测能力。