摘要
针对压缩感知理论中测量矩阵硬件实现与重构性能问题,提出一种深度学习方法来获得稀疏的三元测量压缩感知.该方法构建了非常稀疏的三元{0, 1,-1}观测矩阵,在所提出的网络架构上施加稀疏性和二元约束,用更少的观测值满足高概率的图像重构保证,解决了硬件限制和重构性能要求.该文深度学习架构以端到端的方式,提出的网络架构在训练阶段共同学习一对测量矩阵和重建算子,优化线性传感过程和非线性重构过程.实验表明:该文方法在5%非零元素测量矩阵条件下,图像重建质量优于现有方法,说明该文方法具有可行性与有效性.
-
单位重庆电子工程职业学院