摘要

为平衡粒子群算法勘探与开发能力,本文提出混合均值中心反向学习粒子群优化算法.算法将所有粒子和部分优质粒子分别构造的均值中心进行贪心选择,得出的混合均值中心将对粒子所在区域进行精细搜索.同时对混合均值中心进行反向学习,使粒子能探索更多新区域.将本文算法与最新改进的粒子群算法、人工蜂群算法和差分算法在多种测试函数集上进行比较,实验结果验证了混合均值中心反向学习策略的有效性,算法的综合优化性能更强.

  • 单位
    鄱阳湖流域水工程安全与资源高效利用国家地方联合工程实验室; 南昌工程学院; 江西省水信息协同感知与智能处理重点实验室