摘要

提出了一种根据上下文数据关系建立的word2vec算法。针对大量访问数据来建立白名单模型,通过对配电网上下文测量信息和控制信息的挖掘和数据驱动实现恶意控制指令的快速检测,获得白名单模型中的不符合项作为异常。利用孤立森林算法建立上下文关系的孤立树,从而实现对各测试样本的分类和训练,采用CBOW神经网络模型将中心词汇后验概率作为输出层,获得不同样本集下的监测精确度和准确率。最后在建立的配电网仿真平台上对word2vec进行了数据挖掘和计算,验证了算法具有高准确率和低误警率。

  • 单位
    中国移动通信集团云南有限公司