摘要
[目的/意义]从学术共同体的评论性引用视角出发,以引文全文本为基础,结合词频统计、深度学习等方法,探析引文文本中表征突破性评价的文本特征并构建自动识别模型以实现从海量文献中识别潜在突破性文献。[方法/过程]以诺贝尔生理学或医学奖获得者的关键文献以及Science十大科学突破主题的代表文献(医学领域)作为金标准突破性文献集并获取引用语句,对引用语句进行词频统计并结合人工筛选获取表征突破性评价的常用词。对引用语句进行人工标注,利用BERT、BIOBERT模型进行训练形成自动识别模型,并选择癌症领域进行实证分析。[结果/结论]结果表明,学术共同体在评价具有重大突破价值的文献时具有明显的文本特征;相较BERT模型,生物医学语言表示模型BIOBERT对突破性评价引用语句的识别能力明显增强,F1值为0.84。基于引用语句的自动识别模型能够较为精准地识别具有重要学术价值的文献并能在一定程度上实现早期识别和早期评价。
-
单位中国医学科学院医学信息研究所; 北京协和医学院