摘要

为提高电力变压器故障识别精确度,提出基于核主成分分析(Kernel principal component analysis,KPCA)与改进哈里斯鹰算法(Improved Harris hawk algorithm,IHHO)优化最小二乘支持向量机(Least square support vector machine,LSSVM)的电力变压器故障诊断方法。首先,利用核主成分分析对变压器原始故障数据进行预处理,去除冗余数据;其次,结合Sigmoid变形函数以及点对称策略改进传统哈里斯鹰算法(HHO),并与HHO和遗传算法(Genetic algorithm,GA)进行性能对比,证明求解精度和网络收敛速度有所提升;最后,采用IHHO对LSSVM的相关超参数进行优化求解,获取KPCA与IHHO-LSSVM相结合的变压器故障诊断模型。结果表明所提模型的诊断精度为95.6%,同其他故障诊断模型相比分别提高了8.9%、16.7%,证明了所提方法能够有效地提升变压器故障诊断性能。