摘要

长距离调水工程闸前水位受诸多水力控制因素影响,其波动趋势具有很强的非线性和随机性特征,难以用水动力机理模型高精度模拟,成为长距离输水调度方案制定的一大障碍。提出了一种基于深度学习网络的闸前水位预测新方法,建立了一个三层的LSTM水位预测模型,并应用于南水北调中线京石段的闸前水位预测,与深度神经网络(DNN)预测结果进行了对比。结果显示LSTM预测结果具有很高的精度,纳什系数高达0.99,均方根误差最高为0.029 m,能很好地预测水位波动趋势,预测效果比DNN更好。总结在LSTM模型构建时应考虑最大迭代次数对计算效率影响以及LSTM隐藏单元数目和学习率对精度的影响。本研究可为长距离调水工程水位预判、调度预警、水资源调度决策以及闸门智能控制提供重要参考。