摘要

燃油喷射系统的工作质量直接影响柴油机工作过程及性能。针对利用燃油压力波进行故障诊断时压力波特征点自动化识别困难、影响实时在线监测的问题,提出了利用深度学习图像识别理论进行喷油器故障诊断的方法。通过喷油泵试验台进行了喷油器典型故障模拟试验,测取了高压油管燃油压力波,分析了不同故障状态下燃油压力波动特征及规律,建立了基于深度残差的卷积神经网络(Res-CNN)模型,以一维燃油压力波信号为输入,进行喷油器故障诊断检测及验证,并对故障特征学习过程进行了可视化分析。结果表明,该模型较传统方法具有更高的诊断准确率,验证了直接应用燃油压力波图形识别方法进行在线实时监测的可行性。

  • 单位
    中国人民解放军装甲兵工程学院

全文