摘要
针对变电站传统火灾报警系统存在误报、漏报率高,无法根据站内不同区域重要性采取严格程度不同的火灾报警及消防措施问题,笔者提出一种基于数据融合技术的无人值守变电站火灾探测算法。在数据融合技术的特征层,采用BP神经网络对探测区域内温度、烟雾体积分数、CO体积分数3种特征参量进行数据融合,预测输出明燃火及阴燃火的概率;在决策层,通过模糊推理将特征层输出的火灾概率与火灾延续时间、火灾风险度和损害度3种附加信息进行数据融合,最终决策输出火灾报警等级。仿真测试结果表明:该算法能够快速准确识别出明燃火及阴燃火场景,并能根据不同探测区域的重要性差异给出合理报警决策,具有一定的灵活性和先进性。
- 单位