摘要
在高端铝合金板带材生产过程中,准确、快速地识别和分析铝带材表面缺陷是控制带材表面质量的基础,也是现代智能生产过程智能感知的重要基础。针对气垫式连续热处理及表面处理生产线的高端铝合金汽车板、航空板的表面质量缺陷问题,采用融入协调注意力的MobileNetV2模型进行缺陷图像识别,提高模型对铝带材缺陷图像特征提取能力;融入协调注意力的MobileNetV2模型的准确率高达94.97%,准确率比原始MobileNetV2模型高1.34%,效果比肩ResNet50、VGG16模型;融入协调注意力的MobileNetV2模型的参数量仅1.52 MB,远远低于ResNet50、VGG16模型的参数量;该模型对缺陷识别精度高、识别速度快,具有很好的应用价值。
-
单位广西南南铝加工有限公司; 东北大学; 轧制技术及连轧自动化国家重点实验室; 广西先进铝加工创新中心有限责任公司