摘要
针对目前岩爆预测研究通常忽视岩爆数据集存在离群样本、缺失值与样本不平衡性问题以及围岩应力梯度的影响,提出一套完备的岩爆数据预处理流程,引入可间接表征围岩应力梯度的洞径指标,建立了隧洞岩爆多因素综合预测模型。在数据采集阶段,考虑隧道与采场及隧洞群受力条件差异,从岩爆数据库中分离出隧洞岩爆样本共306例。在岩爆预测指标选取阶段,选取隧洞洞径D0、围岩最大切向应力σθmax、岩石单轴抗压强度σc、岩石抗拉强度σt、弹性能变形指数Wet共5个指标。在数据预处理阶段:针对缺失值,引入随机森林多重插补法(MI-RF)对岩爆样本进行补全;针对离群样本,引入最近邻(KNN)、孤立森林(IsolationForest)、局部异常因子(LOF)3种无监督算法综合评估岩爆数据集并剔除离群样本;针对样本不平衡,引入自适应综合过采样(ADASYN)算法扩容少数类样本。在模型验证阶段:采用支持向量机(SVM)、随机森林(RF)、梯度提升树(GBDT)、自适应提升树(AdaBoost)、极限梯度提升树(XGBoost)5类算法构建岩爆预测模型。模型预测结果表明:基于数据预处理并考虑洞径指标的5类模型皆为同类算法模型中的最优;在不进行数据预处理的条件下,考虑洞径指标模型要优于不考虑洞径指标的同类算法模型。
- 单位