摘要
针对非平稳非线性时间序列的数据挖掘与预测问题,提出一种基于分层有限状态机的预测方法 .首先,将时间序列构建成有限状态机(FSM)模型,将时间序列的相对序列模式作为状态.然后,构建一种层次模型,通过关联特定模式形成中间状态,并以递归方式对模式进行分组,以此解决长序列造成的过度训练问题.最后,通过梯度下降法结合所有有限状态(FS)预测器的输出,生成最终预测结果 .实验结果表明,该方法能够对时间序列进行有效的规则挖掘,具有较高的预测精度.
-
单位郑州工程技术学院; 苏州大学