摘要

随着深度学习语义分割的快速发展,基于计算机视觉语义分割模型的高分辨率遥感影像分类方法也大量涌现。为系统定量地研究经典的和先进的视觉语义分割模型在遥感影像分类中的性能,在总结深度学习语义分割进展的基础上,选择9种基于卷积神经网络(CNN)和视觉注意力的语义分割算法,对米级和厘米级2个尺度的遥感数据集进行分析研究。在模型构建上基于计算机视觉通用的语义分割框架,训练时采用红绿蓝3波段遥感图像并基于ImageNet预训练权重进行迁移学习训练。研究结果表明:通用的语义分割模型通过常规训练设置进行训练能取得较好的遥感影像分类效果,部分地物的交并比(IoU)可以达到90%以上;基于视觉注意力的遥感影像分类模型的精度普遍高于基于CNN的模型,且MaskFormer能更有效地提取离散的地物信息;不同类别的精度最高值并不全在总体最优模型中,部分会存在于次优模型中;类似的地物在更高分辨率遥感数据集中可以获得更高的精度。