摘要
通过研究一种基于多尺度卷积神经网络和人体姿态估计模型相结合的多任务步态识别方法,对神经网络识别结果做出一定的解释说明,同时提高其在面对协变量改变场景下的识别效果。该方法将卷积神经网络提取的步态空间特征和人体姿态估计模型得到人体关节时序特征融合,进行身份的识别。使用步态数据集CASIA-B中的正常行走序列和合成行走序列数据以及TUM-GAID步态数据集进行实验。结果表明,该方法在TUM-GAID步态数据集实验中,三种场景T1、T2和T3下的识别率分别达到95.2%、72.4%和84.5%。在CASIA-B步态数据集实验中,对于正常行走序列以及两种合成行走序列,该方法在识别精度上均有较好的表现,体现该模型有较强的鲁棒性。
- 单位