摘要
为了克服传统神经网络不能学习文本长期信息的缺点和神经网络中梯度下降法容易陷入的局部最优问题,提出基于遗传算法(GA)、卷积神经网络(CNN)和长短期记忆神经网络(LSTM)相结合的文本情感分析模型GA-CNN-LSTM。具体来说,该模型首先利用卷积神经网络从全局信息中提取序列特征,之后使用长短期记忆神经网络分析句子的句法和语义结构,最后运用遗传算法从全局进行寻优,有效避免梯度下降法陷入的局部最优问题。在IMDB数据集上进行实验,结果表明,该模型相比于其他现有的网络模型,取得了更好的分类效果,精度比传统的长短期记忆神经网络提高了1.8百分点,准确率达到了0.906。