摘要
针对变压器故障诊断中传统BP神经网络算法准确率低、收敛速度慢、易陷入局部极小值及对初始参数较为敏感等的不足,提出一种基于蝗虫优化(GOA)算法的BP神经网络故障诊断方法。建立以变压器故障特征气体为输入、故障类别为输出的故障诊断模型,利用GOA高效的计算性能和优良的全局搜索能力对BP神经网络的权值和阈值进行参数优化。仿真结果表明,GOA优化后的BP神经网络模型相比于传统BP神经网络和基于遗传算法优化的BP神经网络,能够在保留广泛映射能力的前提下,提升网络的学习速度和全局搜索能力,进而缩短训练所需时间,提高故障诊断精度。
- 单位