摘要
为提高月径流时间序列预测精度,提出小波分解(WD)-非洲秃鹫优化算法(AVOA)-深度极限学习机(DELM)组合预测模型,并应用于云南省丫勒水文站月径流预测。利用WD对月径流时序数据进行分解,以获得更具规律的子序列分量;通过AVOA优化DELM隐含层神经元数,建立WD-AVOA-DELM模型对各子序列分量进行预测,将预测结果加和重构得到最终月径流预测结果。同时构建基于支持向量机(SVM)、BP神经网络两种预测器的WD-AVOA-SVM、WD-AVOA-BP、AVOA-DELM、AVOA-SVM、AVOA-BP作分析对比模型。结果表明:WD-AVOA-DELM模型对丫勒水文站月径流预测的平均绝对百分比误差为3.02%,预测误差远小于WD-STOA-SVM、WD-AVOA-BP模型,预测精度较AVOA-DELM、AVOA-SVM、AVOA-BP提高1个数量级以上,具有较好的预测效果。WD能科学降低径流序列的复杂性,提高预测精度;AVOA能有效优化DELM关键参数,提高DELM网络性能。