摘要
人工源电磁数据易受噪声干扰,影响勘探效果。传统人工源电磁数据处理通常采用频点筛选、异常剔除等方法,人为因素影响太大,且滤波方法无法保留伪随机有效信号。为解决这些问题,针对人工源电磁伪随机数据,通过剖析有用信号与噪声的时域特征,定量辨识并定性分析人工源电磁伪随机有用信号,提出了基于特征提取和聚类识别的人工源电磁伪随机信号处理方法。首先,建立两类典型噪声和伪随机信号的样本库,分析样本库信号的时、频域特征;然后,提取时域统计学特征,并结合模糊C均值聚类算法识别并去除噪声,保留有用信号并重构人工源电磁原始数据;最后,利用数字相干技术提取有效频点的频谱。对模拟数据与实测数据进行处理分析,结果表明:本方法能准确、有效地识别并剔除典型噪声,显著提高人工源电磁伪随机数据的质量,经本文方法处理后的电场分量Ex归一化电场曲线和广域视电阻率曲线更平稳、连续,可有效提高人工源电磁信号的信噪比。
- 单位