摘要
针对经典模糊C均值聚类(FCM)对数据进行等权划分而造成聚类结果不理想的情况,首先,采用点密度加权方式,对变压器油中溶解气体分析(DGA)数据进行处理,提高样本可分性,削弱聚类时出现的等趋势划分对聚类中心以及分类结果造成的影响。然后,以DGA故障数据聚类中心作为变压器标准故障谱。最后,利用施加惯性系数的主成分分析方法对待测样本进行故障识别。研究结果表明:通过点密度加权的FCM对DGA数据进行故障类型分类时,平均准确率比传统FCM算法提升了9.6%。利用上述方法对多组油浸式变压器进行识别,识别结果与实测信息均一致。
-
单位昆明理工大学; 自动化学院