摘要

为提升超短期电网负荷预测精度,提出基于Stacking多模型融合的超短期电网负荷预测法。首先,结合5-折交叉验证法分别训练第一层的LSTM、LightGBM、XGBoost三个初级学习器,将训练结果进行Stacking融合;然后将融合结果作为新特征用于训练第二层LightGBM次级学习器,使用次级学习器得到电网负荷预测的最终结果;最后利用山东省公共数据开放平台提供的某市实际超短期电网数据验证所提方法的有效性。实验结果表明,比起单一模型预测,所提的Stacking多模型融合预测法,在预测结果的平均精度与峰谷变化的适应能力方面更具优势。