摘要
为在场景图生成网络中获得重要的上下文信息,同时减少数据集偏差对场景图生成性能的影响,构建一种基于外部知识库与适应性推理的场景图生成模型。利用结合外部知识库的目标检测模块引入语言先验知识,提高实体对关系类别检测的准确性。设计基于Transformer架构的上下文信息提取模块,采用两个Transformer编码层对候选框和实体对关系类别进行处理,并利用自注意力机制分阶段实现上下文信息合并,获取重要的全局上下文信息。构建特征特殊融合的适应性推理模块,通过软化分布并根据实体对的视觉外观进行适应性推理关系分类,缓解实体对关系频率的长尾分布问题,提升模型推理能力。在VG数据集上的实验结果表明,与MOTIFS模型相比,该模型在谓词分类、场景图分类和场景图生成子任务上的Top-100召回率分别提升了1.4、4.3、7.1个百分点,对于多数关系类别具有更好的场景图生成效果。
- 单位