基于果穗图像的玉米品种分类识别

作者:赵威; 马睿; 王佳; 郭宏杰; 许金普*
来源:中国农业科技导报, 2023, 25(06): 97-106.
DOI:10.13304/j.nykjdb.2022.0633

摘要

优良品种对提高农业产量和收入起着关键作用,针对现有的种业安全问题,为实现玉米品种的快速识别和保护,构建一种基于玉米果穗图像的品种识别模型。将采集到的1 000张玉米果穗图像经预处理后按7∶2∶1的比例划分为训练集、验证集和测试集,并对数据集进行平移、翻转等多种数据增强处理。通过迁移学习,将预训练好的权重和参数迁移到NASNet-mobile、Xception、ResNet50V2、MobileNetV2、DenseNet121、VGG16模型进行对比,结果表明,NASNet-mobile识别性能较好,识别率达90%。不同优化算法的对比表明,优化器选择Adam模型具有更好的表现。在此基础上,对多种全连接层模块进行试验,结果表明,全连接层数量为2层、维度为256时可以得到更好的玉米果穗图像特征,最终模型在全连接层模块下的识别准确率达95%,较NASNet-mobile提升5%,实现了对玉米品种的分类识别。以上结果为玉米品种的快速精准鉴定以及种质资源保护提供了智能化技术支持。

全文