摘要
针对鸟声识别算法中提取特征单一、分类准确率低等问题,提出一种基于混合特征选择和灰狼算法优化核极限学习机的鸟声识别方法。首先从鸟声数据中提取大规模声学特征集ComParE,其次计算每个特征的Fscore并进行排序,然后以广义顺序向前浮动搜索(Generalized Sequential Forward Floating Search, GSFFS)为搜索策略,特征子集在核极限学习机(Kernel Limit Learning Machine, KELM)上十折交叉验证的正确率,作为特征选择标准进行特征选择,得到适用于鸟声识别的特征子集,最后通过灰狼算法(Grey Wolf Optimizer, GWO)选择最优KELM参数识别鸟声。在柏林自然科学博物馆鸟声数据库中进行实验,该方法在60类鸟声识别平均正确率和F1-score达到94.45%和92.29%。结果表明,该方法相较于传统自行设计提取的单一特征集具有更高的识别精度,GWO-KELM模型比网格搜索方式更易找到全局最优值。
- 单位