摘要
针对车牌中汉字识别率低和识别速度慢问题,提出一种基于深度学习的车牌识别网络LeNet-5-L,该网络把车牌识别分为两个阶段,运用OpenCV库函数对车牌图像预处理,结合垂直投影分割方法将车牌分割为7个独立字符图像,降低了图像特征提取难度,从而提高车牌中各个的字符识别率和整个车牌识别速度;运用卷积神经网络解决车牌字符识别问题,基于LeNet-L设计一种车牌字符识别网络LeNet-5-L,有效提高车牌中首字符汉字识别率;实验结果表明,该网络对车牌中各个字符的识别准确率均高于99.97%,单个车牌识别时间仅需0.83 ms,该方法有效的提高车牌识别的正确率和识别速度。
- 单位