基于LMD能量熵的齿轮箱故障诊断研究

作者:徐乐; 李伟; 张博; 朱玉斌; 郎超男
来源:机械传动, 2022, 46(10): 24-29.
DOI:10.16578/j.issn.1004.2539.2022.10.004

摘要

针对小样本情况下齿轮箱复合故障特征难以识别的问题,提出了基于局部均值分解(Local mean decomposition,LMD)能量熵的齿轮箱故障诊断方法。利用LMD方法对齿轮箱振动信号进行处理,得到若干个PF分量;利用不同状态下齿轮箱振动信号在频域区间内分布不均的特性,计算出分量能量在频域区间离散的值,即LMD能量熵;通过不同状态下LMD能量熵的分布进行了齿轮箱故障分类。结果显示,在小样本情况下,基于LMD能量熵方法能够精确地对齿轮箱故障类型进行特征提取和故障诊断,也表明了该方法对齿轮箱故障诊断的优越性。

全文