基于改进SVM算法的高压断路器故障诊断

作者:盖曜麟; 葛丽娟*; 郭懿中; 解治中
来源:高压电器, 2022, 58(12): 14-20.
DOI:10.13296/j.1001-1609.hva.2022.12.003

摘要

为了能更快速、准确的对高压断路器进行状态分析与故障诊断,文中提出了基于APSO-PCA-SVM算法的高压断路器故障诊断模型。首先提取分合闸电流信号中峰谷电流值、关键时刻等7维特征及动触头位移信号中的3维特征;随后利用PCA(主成分分析)对10维特征进行数据降维并确定最终特征集;最后采用APSO(自适应粒子群)算法进行SVM(支持向量机)核参数寻优,将最终特征集作为模型输入,建立了APSOPCA-SVM故障诊断模型,对高压断路器进行故障分类诊断。实例分析结果表明,该方法能够最大程度去除冗余信息,简化了诊断模型的同时提高了诊断精度和效率,在故障样本较少时采用有限特征量即可较为理想的实现对高压断路器此类小样本设备的高效故障诊断。