摘要
针对遗传算法(Genetic Algorithm, GA)容易陷入局部最优的问题,借鉴热力学非平衡定态下的最小熵增原理,提出一种基于最小熵增原理的热力学选择策略,使个体的选择不再完全依赖于适应值。通过最小熵产生选择策略使种群在保证收敛速度的同时保持多样性,有效避免了种群陷入局部最优。通过定义个体密度来度量种群多样性,利用精英策略驱动种群熵产生快速下降;当种群多样性过低时,使用基于最小熵产生的选择策略产生新种群以保证种群多样性。在0/1背包问题和数值测试问题上的实验结果均表明,该策略能很好地保证解集分布的均匀性,防止种群陷入局部最优。同时,该策略也可应用于目前较新改进的遗传算法中,对算法效率也有一定的改进,具有很好地普适性。