摘要

客流预测是铁路客运运营管理的重要依据,铁路客流具有非线性、非平稳的特点,传统预测模型很难得到满意的结果,因此利用经验模态分解(EMD)方法对客流进行自适应的分解,利用支持向量回归机(SVR)对固有模态函数(IMF)进行预测,建立基于EMD的SVR铁路客流预测模型。利用Matlab对SVR预测、BP神经网络预测和基于EMD的SVR预测模型进行仿真实验,得出3种预测模型的平均相对误差,分别为22%、25%和13%。结果表明,基于EMD的SVR方法的预测精度明显高于另外两种预测方法,能够有效地提高铁路客流预测准确性。

  • 单位
    中国铁道科学研究院集团有限公司